首页> 外文OA文献 >Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.
【2h】

Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

机译:三唑类杀菌剂可对烟曲霉中的医用三唑类产生交叉耐药性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14alpha-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34)/L98H). We investigated if TR(34)/L98H could have developed through exposure to DMIs. METHODS AND FINDINGS: Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in The Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR(34)/L98H isolate in 1998. Through microsatellite genotyping of TR(34)/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR(34)/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. CONCLUSIONS: Our findings support a fungicide-driven route of TR(34)/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs.
机译:背景:唑在曲霉病的治疗中起着重要作用。在烟曲霉中,对偶氮唑的耐药性是一个正在出现的全球性问题,可能会通过患者治疗而发展。另外,已经提出了通过暴露于14α-脱甲基酶抑制剂(DMI)来发展抗药性的环境途径。与这种推定的杀菌剂驱动途径相关的主要耐药机制是Cyp51A基因(TR(34)/ L98H)发生变化的组合。我们调查了TR(34)/ L98H是否可能通过暴露于DMI而发展。方法和结果:1970年至2005年间,对荷兰经批准用作杀真菌剂,除草剂,除草剂安全剂和植物生长调节剂的31种化合物进行了对医用三唑的交叉耐药性研究。此外,进行了CYP51蛋白质同源性建模和分子比对研究,以鉴定分子结构和对接模式的相似性。五个三唑DMI,丙环唑,溴康唑,戊唑醇,环康唑和二苯并氟康唑显示出与医用三唑非常相似的分子结构,并且在对接蛋白质时采用相似的姿势。这些DMI还显示出最大的交叉抗性,并且重要的是,在1998年首个临床TR(34)/ L98H分离株恢复之前,已被授权在1990年至1996年之间使用。通过TR(34)/ L98H的微卫星基因分型我们能够计算出第一个分离株是在1997年出现的,证实了上述实验的结果。最后,我们进行了诱导实验,以研究在实验室条件下是否可以诱导TR(34)/ L98H。一个分离株从串联重复的两个拷贝演变为三个拷贝,表明杀菌剂的压力确实可以导致这些基因组变化。结论:我们的发现支持烟曲霉TR(34)/ L98H的杀菌剂驱动途径。五个三唑DMI和三个医用三唑的相似分子结构特征似乎是交叉耐药性发展的潜在机制。我们的发现对评估与使用三唑DMI相关的健康风险具有重大意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号